Hydrocracker – der finale Schritt zum PtL-Kerosin

Der Power-to-Liquid-Prozess ist komplex, gerade wenn es in Richtung des finalen Produkts, z.B. PtL-Kerosin geht. IASA informiert in ihrem Journal und in ihrem PtL-Newsletter über die Möglichkeiten und Herausforderungen rund um das Thema Power-to-Liquid für den Luftverkehr. Den IASA-PtL-Newsletter können Sie hier abonnieren: https://iasaev.org/de/newsletter/

Die nachfolgende Information zum Hydrocracking stammt aus einer Verfahrensbeschreibung, die wir mit der freundlichen Genehmigung von BP Europe SE hier wiedergeben.

Wertvolles Cracken: Aus schwer mach leicht

Die Destillation zerlegt das Rohöl in seine einzelnen Bestandteile, kann aber nur eine bestimmte Produktpalette erzeugen. Durch das Cracken kann die Produktion an Benzinen und/oder Dieselkraftstoff oder leichtem Heizöl vergrößert werden. Diese leichten Produkte sind im Markt gefragt.

Foto: BP Europe SE

Die Ausbeutestrukturen, d.h. das Verhältnis der einzelnen aus einem bestimmten Rohöl erzeugten Produkte zueinander, sind durch die Destillation nur in engen Grenzen veränderbar. Man benötigt zusätzliche Anlagen, in denen die weniger erwünschten schweren Bestandteile des Rohöls in leichtere umgewandelt werden können. Hier kommen die Crackprozesse ins Spiel. Sie sind für Raffinerien wichtige Methoden, um aus dem Destillat und dem Vakuumrückstand der Rohöldestillation noch mehr hochwertige Produkte wie Benzin, Diesel und Heizöl zu produzieren.

Man unterscheidet grundsätzlich drei Verfahrensarten beim Cracken: Thermisches Cracken, katalytisches Cracken und Hydrocracken.

Durch Hitze spalten: Thermisches Cracken

Beim thermischen Cracken wird der gewünschte Effekt durch Überhitzung der eingesetzten Destillationsrückstände unter Druck erreicht. Dieser Vorgang spielt sich in den Röhren eines Spaltofens ab. Temperatur – etwa 500 Grad Celsius – und Verweilzeit im Crackofen werden so gewählt, dass ein möglichst hoher Umwandlungs- oder Crackeffekt erreicht wird.

In der BP Raffinerie Lingen erfolgt das thermische Cracken in einem Coker. Die BP Raffinerie Gelsenkirchen verfügt neben einem Coker auch über eine Schwerölvergasungsanlage sowie einen Visbreaker, eine milde Form des thermischen Spaltens. Im Visbreaker werden die Rückstände aus der Vakuumdestillation leichtflüssiger. Dieses Verfahren wird somit angewandt, um die Zähflüssigkeit schwerer Öle zu senken.

Chemische Reaktionen fördern: Katalytisches Cracken

Im Gegensatz zum thermischen Verfahren werden die aufgespaltenen Fraktionen des Rohöls beim katalytischen Cracken mit einem Katalysator erhitzt. Dies sind Stoffe, die eine chemische Reaktion fördern, ohne sich zu verändern. Es gibt zwei katalytische Crack-Verfahren: Fluid-Catalytic-Cracken (FCC) und Hydrocracken (HC).

Beim FCC wird das schwere Vakuumdestillat einer Raffinerie zu leichteren Produkten gespalten. Die Raffinerie Gelsenkirchen-Scholven verarbeitet einige Erzeugnisse des FCCs in dem Petrochemie-Komplex weiter. So wird beispielsweise FCC-C3 (Propan-Propen-Gemisch) in der Cumolanlage weiterverarbeitet.

In den FCC-Anlagen setzt sich beim Cracken außerdem Kohlenstoff in fester Form als Koks am Katalysator ab. Der Koks nimmt dem Katalysator seine Wirkung. Deshalb wird der Koks in einem nachgeschalteten Regenerator abgebrannt, so dass der Katalysator erneut verwendet werden kann.

Mit Hilfe des katalytischen Crackers wird nicht nur der Anteil von schwerem Heizöl vermindert, sondern auch gleichzeitig ein Teil des Schwefels entfernt, der im Einsatz enthalten war. Die Oktanzahl der Crackbenzine liegt bei 80 bis 85.

Power-to-Liquid

Grafik: BP Europe SE

Hydrocracker spaltet in Gegenwart von Wasserstoff

Beim Hydrocracken handelt es sich um ein katalytisches Spaltverfahren in Gegenwart von Wasserstoff bei einem Druck von 100 bis 150 Bar, das eine sehr weitgehende Umwandlung des Einsatzproduktes ermöglicht. Das Hydrocracken ist ein technisches elegantes und flexibles Konversionsverfahren.

Allerdings erfordert HC aufgrund der eingesetzten Mengen an Wasserstoff besondere Sicherheitsmaßnahmen. Denn Wasserstoff kann bei hohem Druck durch die Anlagenwände dringen. Daher sind hohe Investitionen in Stahlwände notwendig.

Doch dies lohnt sich: Das Hydrocracken hat den Vorteil, dass sich je nach Katalysator und Betriebsbedingungen die erwünschte Ausbeute in bestimmte Richtungen verschieben lässt. So kann man im Hydrocracker entweder fast überwiegend Benzin oder überwiegend Dieselkraftstoff und leichtes Heizöl bei gleichzeitig geringem Benzinanteil gewinnen.

Der Hydrocracker der BP Raffinerie in Lingen verarbeitet rund 1,5 Millionen Tonnen Gasöl pro Jahr. Die HC-Anlage der BP Raffinerie in Gelsenkirchen kommt bei einer Verarbeitungskapazität von rund 8.000 Tonnen täglich auf rund 3 Millionen Tonnen Gasöl pro Jahr. Damit leisten die beiden Anlagen einen wertvollen Beitrag dazu, dass auch aus dem Destillat und dem Vakuumrückstand der Destillation Produkte für unseren Alltag entstehen.

Quelle: BP Europe SE

Globale Erwärmung aufhalten

IASA: Nachhaltige Luftfahrt - Sustainable Aviation

DLR-Szenarien für Energie und Mobilität zeigen, wie sich globale Klimaschutzziele erreichen lassen

Montag, 21. Januar 2019

  • Das Deutsche Zentrum für Luft- und Raumfahrt (DLR) hat gemeinsam mit australischen Partnern untersucht, welche Entwicklungen notwendig sind, um die Erderwärmung auf zwei Grad Celsius oder weniger zu begrenzen.
  • Zwei Szenarien beschreiben, welche Entwicklungspfade bei Technologie, Infrastruktur und Energieverbrauch bis zum Jahr 2050 geeignet sind, um das globale Ziel der Pariser Klimavereinbarung von 2015 zu erreichen.
  • Beide Szenarien gehen davon aus, dass sich Energieverbrauch und Energieversorgung grundlegend ändern, erneuerbare Energien massiv ausgebaut werden, es deutliche Effizienzsteigerungen gibt und im Wärme- und Mobilitätsbereich verstärkt Strom sowie synthetische Kraftstoffe zum Einsatz kommen.
  • Schwerpunkt(e): Energie, Verkehr, Klimawandel, Energiesystemanalyse

Im Auftrag der Leonardo DiCaprio Foundation hat das Deutsche Zentrum für Luft- und Raumfahrt (DLR) gemeinsam mit der Technischen Universität Sydney und der Universität Melbourne untersucht, welche Entwicklungen notwendig sind, um die Erderwärmung auf unter zwei Grad Celsius zu begrenzen. Dieses Ziel entspricht dem internationalen Übereinkommen bei der Pariser Weltklimakonferenz 2015. Kern der Studie sind zwei Szenarien, die beschreiben, welche Entwicklungspfade bei Technologie, Infrastruktur und Energieverbrauch bis zum Jahr 2050 geeignet sind, um die globale Erwärmung auf 2,0 beziehungsweise 1,5 Grad zu beschränken.

“Um dieses Ziel zu erreichen, müssen sich Energieverbrauch und Energieversorgung grundlegend ändern. Wir gehen in beiden Szenarien davon aus, dass erneuerbare Energien massiv ausgebaut werden, es deutliche Effizienzsteigerungen gibt und im Wärme- und Mobilitätsbereich verstärkt Strom sowie synthetische Kraftstoffe zum Einsatz kommen”, fasst DLR-Forscher Dr. Thomas Pregger zusammen. Die Abteilung Energiesystemanalyse des DLR-Instituts für Technische Thermodynamik modellierte für die Studie die kompletten Energiesysteme für zehn Weltregionen.

Die Studie geht von heute verfügbaren Technologien aus. Entsprechend der Zielsetzung wurden Optionen mit großen Unsicherheiten in Bezug auf gesellschaftliche, wirtschaftliche oder umweltbezogene Konsequenzen, wie Kernkraft, Geo-Engineering oder das Abscheiden und Speichern von Kohlenstoffdioxid (CCS, carbon capture und storage) nicht berücksichtigt.

Energiesektor: Verbrauchssenkung, Effizienzmaßnahmen, erneuerbare Ressourcen

Was den Energiesektor betrifft, setzen beide Szenarien voraus, dass der Verbrauch in den Industrieländern – entgegen dem globalen Trend – bis 2050 um über 40 Prozent gesenkt und in den sich entwickelnden Ländern langfristig begrenzt werden kann. Neben zahlreichen technischen und strukturellen Verbesserungen erfordern beide Szenarien auch Änderungen im Verbraucherverhalten sowie bei den Investitionsstrategien. Die schnelle Umsetzung von Effizienzmaßnahmen ist vor allem aufgrund der heutigen Nutzung fossiler Energieträger ein wesentlicher Faktor: Nur so lassen sich die in der Studie angenommenen maximalen CO2-Emissionsbudgets (bezogen auf den Zeitraum 2015 bis 2050) von 590 Gigatonnen (2,0 Grad) beziehungsweise 450 Gigatonnen (1,5 Grad) einhalten.

Wind- und Solarenergie tragen in beiden Szenarien erheblich zur Energieversorgung bei. Gleiches gilt für die Nutzung von Biomasse für die Kraft-Wärme-Kopplung und Biokraftstoffe sowie für Fernwärme unter Einbeziehung von solaren, geothermischen und Umweltwärmepotenzialen. Welche erneuerbaren Energien zum Einsatz kommen, hängt von den regionalen Bedingungen und Potenzialen ab.

Investitionen für die Stromerzeugung belaufen sich im Zeitraum von 2015 bis 2050 auf insgesamt rund 50.000 Milliarden US-Dollar, circa 30.000 Milliarden US-Dollar mehr im Vergleich zu einem konventionellen Referenzszenario. Diese Summe beinhaltet höhere Kraftwerksleistungen zur Deckung des zusätzlichen Strombedarfs infolge der Elektrifizierung der Sektoren Wärme und Verkehr sowie zur Erzeugung von synthetischen Energieträgern aus Strom. Da weniger fossile Brennstoffe notwendig sind, können rund 90 Prozent der zusätzlichen Investitionen durch geringere Ausgaben für Brennstoffe ausgeglichen werden. Diese Zahlen berücksichtigen nicht den Infrastrukturbedarf für Netzausbau, Speicher und andere Flexibilisierungsmaßnahmen.

Mobilitätssektor: Elektrifizierung, Verkehrsverlagerung, alternative Kraftstoffe

“Eine schnelle Elektrifizierung ist vor allem im bodengebundenen Personen- und Güterverkehr auf der Straße notwendig, um die 1,5- und 2,0-Grad-Szenarien zu realisieren. Damit verbunden ist ein massiver Ausbau der Batterieproduktion und darüber hinaus die Schaffung von Produktions- und Distributionsanlagen für strombasierte flüssige und gasförmige Kraftstoffe. Weitere wichtige untersuchte Maßnahmen sind die Verlagerung von Straßen- und Flugverkehr auf die Schiene soweit wie möglich und eine Begrenzung des Wachstums im Passagier- und Güterverkehr in den Industrieländern”, beschreibt Johannes Pagenkopf, DLR-Wissenschaftler in der Abteilung Fahrzeugsysteme und Technologieentwicklung des DLR-Instituts für Fahrzeugkonzepte. Dort wurde für die Studie eine detaillierte Modellierung der zukünftigen Mobilität und des daraus resultierenden Energiebedarfs entwickelt.

Beide Szenarien gehen davon aus, dass im Jahr 2050 rund 60 Prozent aller Busse und schweren Lastkraftwagen batterieelektrisch und circa 20 Prozent mit Brennstoffzellen angetrieben werden. Die Motoren der restlichen Busse und Lastkraftwagen werden mit synthetischen oder biogenen Kraftstoffen betrieben. Für die weltweite PKW-Flotte nimmt die Studie an, dass im Jahr 2050 etwa neun von zehn Fahrzeugen mit Strom oder Wasserstoff unterwegs sind. Im Vergleich zum 2,0-Grad-Szenario ist im 1,5-Grad-Szenario eine noch frühere und schnellere Elektrifizierung besonders in den Industrieländern erforderlich. Langfristig werden in beiden Szenarien synthetische Kraftstoffe eine wichtige Rolle für die Klimaneutralität haben, vor allem im Luft- und Schiffsverkehr.

Optionen und Wege aufzeigen für Entscheider in Politik und Gesellschaft

Szenarien sind keine Vorhersagen, sondern Werkzeuge, die eine denkbare Zukunft beschreiben. Mit ihnen erhalten Entscheider in Politik und Gesellschaft einen umfassenden Überblick zu möglichen Entwicklungspfaden, Alternativen und deren Konsequenzen. Denn die Gestaltung der politischen und gesellschaftlichen Rahmenbedingungen auf nationaler wie globaler Ebene ist eine der entscheidenden Herausforderungen, um erfolgreichen Klimaschutz zu verwirklichen.

“Bei der Entwicklung dieser beiden Szenarien hat sich deutlich abgezeichnet, dass uns jetzt kaum mehr ein zeitlicher Puffer bleibt”, stellt Dr. Sven Teske von der Technischen Universität Sydney fest, der die Studie federführend betreut hat. “Vor allem im 1,5-Grad-Szenario müssen die erneuerbaren Energien so schnell wie möglich und ohne weitere Verzögerungen ausgebaut und fossile Energieträger weitgehend ersetzt werden. Jedes Jahr ohne signifikante Emissionsreduktion auf globaler Ebene reduziert die Chance drastisch, die globale Erwärmung auf unter zwei Grad zu begrenzen”, so Teske weiter.

Quelle: DLR

VMK will synthetische, strombasierte Kraftstoffe auf EU- Flottenverbrauchswerte anrechnen lassen

IASA: Nachhaltige Luftfahrt - Sustainable Aviation

Althusmann: Niedersachsen wird von steigender Nachfrage innovativer Treibstoffe profitieren

19.10.2018Niedersachsens Wirtschaftsminister Dr. Bernd Althusmann begrüßt einen Beschluss der Verkehrsministerkonferenz (VMK), der fordert, dass es den Automobilherstellern künftig erlaubt sein soll, sich auch durch synthetische, strombasierte Kraftstoffe erzielte CO2- Einsparungen auf ihre Flottenverbrauchswerte anrechnen zu lassen.Althusmann: „Die Anrechnungsmöglichkeit synthetischer, aus erneuerbaren Energien hergestellter Kraftstoffe wie etwa Wasserstoff auf die CO2-Emissionen würde der Produktion und Weiterentwicklung innovativer Treibstoffe in einem Energieland wie Niedersachsen einen großen Schub verleihen. Eine steigende Nachfrage nach strombasierten Kraftstoffen ist gleichzeitig die Voraussetzung, um die zukunftsweisenden Power-to-X-Technologien auch in Niedersachsen in industriellem wie auch mittelständischem Rahmen aufzubauen.“Bislang zielen die Flotten-Emissionsvorgaben der EU vor allem auf verstärkte Anstrengungen der Automobilhersteller bei der E-Mobilität ab: So gelten E-Fahrzeuge innerhalb der Berechnung grundsätzlich als emissionsfrei, auf wenn der eingesetzte Strom zum Teil fossil erzeugt wird.Minister Althusmann: „Der Absatz von Elektrofahrzeugen verläuft trotz verschiedener Prämienanreize bislang schleppend. Den Automobilherstellern in Deutschland drohen massive Strafzahlungen, wenn sie die Emissionsziele nicht einhalten. Der Einsatz synthetischer, strombasierter Kraftstoffe kann dazu beitragen, Treibhausgase zu reduzieren und die Automobilindustrie mit etwa 1 Million Arbeitsplätzen – davon rund 200.000 allein in Niedersachsen – vor erheblichen wirtschaftlichen Nachteilen zu bewahren.“Der VMK-Beschluss wird der EU über die Bundesregierung übermittelt.Quelle: Niedersächsisches Ministerium für Wirtschaft, Arbeit, Verkehr und Digitalisierung
1 2 3 4 5 65