Greener Skies Ahead 2019

sustainable aviation

SAVE THE DATE

 

Sehr geehrte Damen und Herren,
liebe Mitglieder, Freunde und Partner der IASA,

 

synthetische, mittels ‘grünem Strom’ gewonnene Treibstoffe (PtL) wie auch neue Elektro- und Hybrid-Technologien eröffnen erstmals die Möglichkeit, den Luftverkehr der Zukunft CO2-arm, im Idealfall sogar weitestgehend klimaneutral zu gestalten!

Um über aktuelle Perspektiven für eine ökologisch wie ökonomisch nachhaltige Zukunft der Luftfahrt zu informieren und neue Lösungsansätze zu diskutieren, laden wir Sie hiermit freundlichst zur Konferenz

 

GREENER SKIES AHEAD GSA2019

Solutions for Sustainable Aviation

10th International Conference on Sustainable Aviation and the Future of Air Transport

November 19, 2019, 10:00 – 17:30

Wissenschaftszentrum Bonn

Konferenzraum K1/K2

Ahrstr. 45, 53113 Bonn, Germany

 

ein. Im Fokus der vom Bundesministerium für Umwelt und dem Umweltbundesamt (UBA) geförderten Konferenz stehen innovative Konzepte zur realen, möglichst ganzheitlichen Verbesserung des Klimaschutzes in der Luftfahrt.

Die GSA2019 richtet sich an alle, die in der Luftfahrt Verantwortung tragen. Sie ist damit ein Appell an Entscheidungsträger in Politik, Gremien und Wirtschaft zu zeitnahem Handeln.

Mit ihren vielfältigen Informations- und Kontaktangeboten bietet die GSA2019 zudem beste Möglichkeiten zum professionellen Networking.

Save the date! Jetzt anmelden und Teilnahme sichern!

 

Luftfracht: Daten zum Fliegen bringen

IASA: Nachhaltige Luftfahrt - Sustainable Aviation

Größte Air-Cargo Messe der Welt

(PresseBox) (München, 18.03.19)

Künstliche Intelligenz durchdringt Luftfrachtkette

Mit dem Internet of Things suchen sich Sendungen selbst ihren Weg
Branchentreff air cargo Europe während transport logistic, 4. bis 7. Juni 2019, in München. 
Höhere Anforderungen an den Klimaschutz, die wachsende Bedeutung des Online-Handels sowie der Mangel an Fachkräften gehören zu den großen Herausforderungen der globalen Luftfrachtindustrie. Lösungsansätze bieten die Künstliche Intelligenz, weitere Automatisierung und das Internet of Things. Die Branche forscht aber auch an alternativen Antrieben.

Sie ist die größte Luftfrachtmesse der Welt: die air cargo Europe während der transport logistic in München. Mehr als 220 Unternehmen aus über 40 Ländern werden auf rund 15.000 Quadratmetern ausstellen. „Wir freuen uns, dass wir unter anderem mit Neutral Air Partner, WCA, Finnair Cargo, Antonov Airlines, Thai Airways und All Nippon Airways weitere wichtige Player der Luftfrachtbranche für die Messe gewonnen haben”, erklärt Stefan Rummel, Geschäftsführer der Messe München.

KI setzt sich unweigerlich durch

„Die Anwendung von KI ist die logische Konsequenz der fortschreitenden Digitalisierung in der Luftfracht“, erklärt Prof. Dr. Joachim Ehrenthal von der Fachhochschule Nordwestschweiz, Mitgestalter der offenen Diskussionsrunde „Artificial Intelligence: Next Level Air Cargo?“. Durch den „Austausch über konkrete Anwendungsfälle“ will Ehrenthal das Thema künstliche Intelligenz „auf den Boden bringen.“ KI wird bereits jetzt entlang der Luftfracht-Kette eingesetzt, etwa für Prognosen, optische Prozessüberwachung, die Fahrzeugwartung, das Packen von Behältern oder die Betrugserkennung.

Oftmals passen zu den Luftfracht-Anforderungen die Verfahren der ‚Computational Intelligence‘. Darunter werden von der Natur inspirierte Verfahren verstanden, wie zum Beispiel künstliche neuronale Netze und Schwarmintelligenz. Der Fokus liegt dabei immer auf Daten und deren automatisierter Nutzung. „Wir müssen die Daten zum Fliegen bringen: Das heißt, dass bestehende Datenfriedhöfe aktiviert und in betriebliche Entscheidungs-systeme verwandelt werden müssen“, fasst Ehrenthal zusammen.

Dr. Harald Sieke, Abteilungsleiter Luftverkehrslogistik vom Fraunhofer-Institut für Materialfluss und Logistik (IML), bestätigt diese Sichtweise: „KI wird entlang der gesamten Luftfrachttransportkette eingesetzt werden. Die aussichtsreichsten Möglichkeiten bestehen bei Buchung, Reservierung sowie beim Frachtaufbau für die Flugzeugladung.“ Es werde durch KI auch zu Verschiebungen im Markt kommen, da sich einzelne Player neu aufstellen und andere vom Markt verschwinden werden.

E-Commerce – auch international immer kleinteiliger
Ein weiterer Trend: Der stark wachsende Onlinehandel führt seit Jahren zu immer kleinteiligeren Sendungen bis hin zu Einzelstücken. „Diese Kleinteiligkeit wird vor allem im grenzüberschreitenden E-Commerce ansteigen, ein für die Luftfracht sehr wichtiges Segment“, prognostiziert Sieke. Zudem will der Kunde den Transport möglichst lückenlos verfolgen. Cargo iQ, eine Initiative der International Air Transport Association (IATA), will deshalb zur Prozesskontrolle, Qualitätsüberwachung und Serviceverbesserung beitragen. Emirates SkyCargo ist hier bereits seit März 2018 zertifiziert. „Wir interagieren proaktiv mit unseren Kunden über den Versandstatus“, sagt Nabil Sultan, Emirates Divisional Senior Vice President Cargo. „Wir überwachen rund um die Uhr die Transporte anhand festgelegter Meilensteine in Echtzeit und ergreifen bei Abweichungen oder Verspätungen Korrekturmaßnahmen.“
Automatisch bis selbst-navigierend
Der Fachkräftemangel beschleunigt zudem den Trend zu automatisierten Systemen sowohl beim Handling als auch beim Transport von Luftfracht. Gleichzeitig werden „bis zu fünf Prozent der Luftfracht durch 3-D- und 4-D-Druck überflüssig werden“, schätzt Sieke. Stelle man diese Zahl jedoch dem erwarteten jährlichen Wachstum der Luftfracht gegenüber, dann seien „die Effekte dieser Techniken als vernachlässigbar anzusehen“. Einen wesentlich größeren Einfluss wird hingegen das Internet of Things haben. „In Zukunft suchen sich die Sendungen selbst ihren Weg durch das Luftfrachtnetz“, meint der Wissenschaftler. In fünf bis zehn Jahren werde die aktuell intensive Forschung dazu in der Praxis spürbar sein.

Maßnahmen für den Klimaschutz

Zum Klimaschutz leistet die Luftfracht-Branche bereits heute einen vielfältigen Beitrag, von der Elektrifizierung des Bodenverkehrs bis hin zu Solaranlagen für die Bauten. Es gilt natürlich, die Nachhaltigkeit des Transportmittels Flugzeug insgesamt zu erhöhen. An diesem Ziel arbeitet zum Beispiel die europäische Clean Sky Joint Technology Initiative (JTI). Sie ist mit 1,6 Milliarden Euro das größte EU-Projekt für Nachhaltigkeit und Wettbewerbsfähigkeit der Luftfahrt in Europa. Ein großer Potenzialträger ist die Power-to-Liquid-Technologie, ein Verfahren zum Erzeugen klimaneutraler synthetischer Flüssigbrennstoffe. Gleiches gilt für das hybrid-elektrische Fliegen – Norwegen plant damit die emissionsfreie Luftfahrt bis zum Jahr 2040. Bis zum vollelektrischen Frachtflieger ist es dagegen aufgrund technischer Beschränkungen noch ein weiter Weg.
Quelle: PresseBox

Hydrocracker – der finale Schritt zum PtL-Kerosin

Der Power-to-Liquid-Prozess ist komplex, gerade wenn es in Richtung des finalen Produkts, z.B. PtL-Kerosin geht. IASA informiert in ihrem Journal und in ihrem PtL-Newsletter über die Möglichkeiten und Herausforderungen rund um das Thema Power-to-Liquid für den Luftverkehr. Den IASA-PtL-Newsletter können Sie hier abonnieren: https://iasaev.org/de/newsletter/

Die nachfolgende Information zum Hydrocracking stammt aus einer Verfahrensbeschreibung, die wir mit der freundlichen Genehmigung von BP Europe SE hier wiedergeben.

Wertvolles Cracken: Aus schwer mach leicht

Die Destillation zerlegt das Rohöl in seine einzelnen Bestandteile, kann aber nur eine bestimmte Produktpalette erzeugen. Durch das Cracken kann die Produktion an Benzinen und/oder Dieselkraftstoff oder leichtem Heizöl vergrößert werden. Diese leichten Produkte sind im Markt gefragt.

Foto: BP Europe SE

Die Ausbeutestrukturen, d.h. das Verhältnis der einzelnen aus einem bestimmten Rohöl erzeugten Produkte zueinander, sind durch die Destillation nur in engen Grenzen veränderbar. Man benötigt zusätzliche Anlagen, in denen die weniger erwünschten schweren Bestandteile des Rohöls in leichtere umgewandelt werden können. Hier kommen die Crackprozesse ins Spiel. Sie sind für Raffinerien wichtige Methoden, um aus dem Destillat und dem Vakuumrückstand der Rohöldestillation noch mehr hochwertige Produkte wie Benzin, Diesel und Heizöl zu produzieren.

Man unterscheidet grundsätzlich drei Verfahrensarten beim Cracken: Thermisches Cracken, katalytisches Cracken und Hydrocracken.

Durch Hitze spalten: Thermisches Cracken

Beim thermischen Cracken wird der gewünschte Effekt durch Überhitzung der eingesetzten Destillationsrückstände unter Druck erreicht. Dieser Vorgang spielt sich in den Röhren eines Spaltofens ab. Temperatur – etwa 500 Grad Celsius – und Verweilzeit im Crackofen werden so gewählt, dass ein möglichst hoher Umwandlungs- oder Crackeffekt erreicht wird.

In der BP Raffinerie Lingen erfolgt das thermische Cracken in einem Coker. Die BP Raffinerie Gelsenkirchen verfügt neben einem Coker auch über eine Schwerölvergasungsanlage sowie einen Visbreaker, eine milde Form des thermischen Spaltens. Im Visbreaker werden die Rückstände aus der Vakuumdestillation leichtflüssiger. Dieses Verfahren wird somit angewandt, um die Zähflüssigkeit schwerer Öle zu senken.

Chemische Reaktionen fördern: Katalytisches Cracken

Im Gegensatz zum thermischen Verfahren werden die aufgespaltenen Fraktionen des Rohöls beim katalytischen Cracken mit einem Katalysator erhitzt. Dies sind Stoffe, die eine chemische Reaktion fördern, ohne sich zu verändern. Es gibt zwei katalytische Crack-Verfahren: Fluid-Catalytic-Cracken (FCC) und Hydrocracken (HC).

Beim FCC wird das schwere Vakuumdestillat einer Raffinerie zu leichteren Produkten gespalten. Die Raffinerie Gelsenkirchen-Scholven verarbeitet einige Erzeugnisse des FCCs in dem Petrochemie-Komplex weiter. So wird beispielsweise FCC-C3 (Propan-Propen-Gemisch) in der Cumolanlage weiterverarbeitet.

In den FCC-Anlagen setzt sich beim Cracken außerdem Kohlenstoff in fester Form als Koks am Katalysator ab. Der Koks nimmt dem Katalysator seine Wirkung. Deshalb wird der Koks in einem nachgeschalteten Regenerator abgebrannt, so dass der Katalysator erneut verwendet werden kann.

Mit Hilfe des katalytischen Crackers wird nicht nur der Anteil von schwerem Heizöl vermindert, sondern auch gleichzeitig ein Teil des Schwefels entfernt, der im Einsatz enthalten war. Die Oktanzahl der Crackbenzine liegt bei 80 bis 85.

Power-to-Liquid

Grafik: BP Europe SE

Hydrocracker spaltet in Gegenwart von Wasserstoff

Beim Hydrocracken handelt es sich um ein katalytisches Spaltverfahren in Gegenwart von Wasserstoff bei einem Druck von 100 bis 150 Bar, das eine sehr weitgehende Umwandlung des Einsatzproduktes ermöglicht. Das Hydrocracken ist ein technisches elegantes und flexibles Konversionsverfahren.

Allerdings erfordert HC aufgrund der eingesetzten Mengen an Wasserstoff besondere Sicherheitsmaßnahmen. Denn Wasserstoff kann bei hohem Druck durch die Anlagenwände dringen. Daher sind hohe Investitionen in Stahlwände notwendig.

Doch dies lohnt sich: Das Hydrocracken hat den Vorteil, dass sich je nach Katalysator und Betriebsbedingungen die erwünschte Ausbeute in bestimmte Richtungen verschieben lässt. So kann man im Hydrocracker entweder fast überwiegend Benzin oder überwiegend Dieselkraftstoff und leichtes Heizöl bei gleichzeitig geringem Benzinanteil gewinnen.

Der Hydrocracker der BP Raffinerie in Lingen verarbeitet rund 1,5 Millionen Tonnen Gasöl pro Jahr. Die HC-Anlage der BP Raffinerie in Gelsenkirchen kommt bei einer Verarbeitungskapazität von rund 8.000 Tonnen täglich auf rund 3 Millionen Tonnen Gasöl pro Jahr. Damit leisten die beiden Anlagen einen wertvollen Beitrag dazu, dass auch aus dem Destillat und dem Vakuumrückstand der Destillation Produkte für unseren Alltag entstehen.

Quelle: BP Europe SE

Power to Liquid

Technologischer Durchbruch für die Energiewende

Dresden, 15. Januar 2019

Der Sunfire GmbH ist ein technologischer Durchbruch für die Energiewende gelungen: Die erfolgreiche Inbetriebnahme und der erfolgreiche Testbetrieb (> 500 Stunden) einer Hochtemperatur-Co-Elektrolyse seit November 2018 am Standort in Dresden. Die SUNFIRE-SYNLINK genannte Technologie ermöglicht die hocheffiziente Produktion (zukünftig ca. 80 % Wirkungsgrad im industriellen Maßstab) von Synthesegas in einem einzigen Schritt unter Einsatz von Wasser, CO2 und Ökostrom. Damit sinken die Investitions- und Betriebskosten für Power-to-X-Projekte (e-Crude, e-fuels) deutlich.

Den technologischen Durchbruch erreichte Sunfire im Rahmen des vom Bundesministerium für Bildung und Forschung geförderten Kopernikus-Projekts Power-to-X (03SFK2Q0), an dem ebenfalls das Karlsruher Institut für Technologie (KIT) beteiligt ist. Die erfolgreich betriebene Co-Elektrolyse (10 Kilowatt DC, bis zu 4 Nm³/h Synthesegas), wird in den kommenden Wochen nach Karlsruhe ausgeliefert und dort in Kombination mit den Technologien von Climeworks (Direct Air Capture), INERATEC (Fischer-Tropsch-Synthese) und KIT (Hydrocracking) in einem Container zu einer autarken Anlage verbunden. Bis Ende August 2019 soll damit die integrierte Produktion des synthetischen Rohölersatzes e-Crude demonstriert werden; erstmalig in einem durch die Co-Elektrolyse ermöglichten 2-Stufen-Prozess in dieser Größenordnung.

KOMMERZIALISIERUNG DER CO-ELEKTROLYSE FÜR NORWEGEN-PROJEKT

Weiterhin hat Sunfire am 01.01.2019 im Rahmen des vom Bundesministerium für Wirtschaft und Energie geförderten Projekts „SynLink“ (03EIV031A) mit der Skalierung der Hochtemperatur-Co-Elektrolyse auf industriellen Maßstab begonnen – zunächst mit einer Eingangsleistung von 150 Kilowatt (DC). Dieses multiplizierbare Co-Elektrolyse-Modul soll perspektivisch im norwegischen Projekt des Partners Nordic Blue Crude zum Einsatz kommen. Hier soll eine erste kommerzielle Anlage entstehen, die jährlich 10 Millionen Liter bzw. 8.000 Tonnen des synthetischen Rohölersatzes e-Crude auf Basis von 20 Megawatt Eingangsleistung produzieren wird.
Geht die Anlage im Industriepark Heroya in Betrieb, werden CO2-Emissionen in Höhe von ca. 21.000 Tonnen pro Jahr vermieden, da Abwärme aus Industrieprozessen als auch umweltfreundliche elektrische Energie aus Wasserkraft eingesetzt wird. 13.000 PKW könnten damit vollständig mit synthetischem Ökokraftstoff versorgt werden.

Hintergrund: Hochtemperatur-Co-Elektrolyse

In bisherigen Power-to-Liquids-Verfahren werden zwei getrennte Prozessschritte genutzt, um Wasserdampf in seine Bestandteile Wasserstoff und Sauerstoff zu zerlegen (Elektrolyse) und Kohlenstoffdioxid zu Kohlenstoffmonoxid (Reverse Wasser-Gas-Shift Reaktion) zu reduzieren. Mit der Co-Elektrolyse von Sunfire werden H2 (Wasserstoff) und CO (Kohlenstoffmonoxid) nun in einem einzigen Prozessschritt gewonnen, was die Effizienz des Gesamtverfahrens erheblich verbessert und somit auch die Investitions- (CAPEX) und Betriebskosten (OPEX) reduziert. Außerdem reduziert sich der Platzbedarf durch die einstufige SUNFIRE-SYNLINK Technologie merklich.

Durch die globale Energiewende und die Verpflichtung zur Einhaltung der Pariser Klimaschutzziele haben die Sunfire-Technologien großes, weltweites Marktpotenzial. Der globale Bedarf für Elektrolyse-Technologien zur Produktion von grünem, erneuerbarem Wasserstoff wird auf mehr als 3.000 Gigawatt geschätzt. Daneben benötigen zahlreiche Sektoren wie der Langstreckenstraßentransport, der Flug- oder der Schiffsverkehr Alternativen zum fossilen Diesel und Kerosin, die hervorragend transportierbare e-Fuels über vorhandene Infrastrukturen bieten können.

Neben der Herstellung von Kraftstoffen, findet Synthesegas seine Abnehmer in einer ganzen Reihe von Industrien: Etwa in der Chemieindustrie, bei der Herstellung von Kunststoffen oder im Kosmetiksektor. Bislang wird Synthesegas vorwiegend auf Basis von fossilem Erdgas für die industrielle Verwendung hergestellt – in Zukunft CO2-neutral durch die hocheffiziente Co-Elektrolyse von Sunfire.

Power to Liquid

Foto: Sufire

Neuer Technologiepartner Paul Wurth SA

Zuletzt hatte Sunfire, eines der innovativsten Energie-Unternehmen der Welt, mit dem weltweit führenden Maschinen- und Anlagenbauer für die Metallindustrie, Paul Wurth, einen neuen Lead-Investor und Technologiepartner gewonnen. Die Finanzierungsrunde unter Einbeziehung der früheren Investoren brachte dem Unternehmen zusätzlich 25 Millionen Euro Venture Capital ein. Mit dem Geld strebt Sunfire nun die Realisierung kommerzieller Multi-Megawatt- Projekte im Bereich Elektrolyse und Power-to-X an.

Quelle: Sunfire


 

Treibstoff für klimaneutrales Fliegen

nachhaltige Luftfahrt

Verbundprojekt „PowerFuel“ bereitet am KIT Markteinführung von synthetischem Kerosin aus erneuerbarem Strom und Kohlendioxid aus der Luft vor

19.12.2018

Fliegen ist energieintensiv, gleichzeitig nimmt der Luftverkehr stetig zu – mit negativen Folgen für das Weltklima. Das Karlsruher Institut für Technologie (KIT) und die Firma Ineratec, ein Spin-Off des KIT, erproben jetzt gemeinsam mit weiteren Partnern aus Wirtschaft und Forschung die Herstellung von synthetischen klimaneutralen Kraftstoffen für den Luft-, Schwerlast- und Schiffsverkehr.

„Wir brauchen dringend CO2-freie Mobilität“, sagt Professor Roland Dittmeyer, Leiter des Instituts für Mikroverfahrenstechnik (IMVT) des KIT. In Deutschland stammt rund ein Fünftel der klimaschädlichen Emissionen aus dem Verkehr. Abhilfe schaffen könnten Elektroan- triebe – sofern sie mit CO2-freiem Strom gespeist würden. Das Problem: In der Luftfahrt oder im Seeverkehr ist Elektromobilität nur bedingt tauglich. Die Lösung: Synthetische Kraftstoffe aus dem Treibhausgas CO2 und erneuerbarem Strom. Geplant ist die Gewinnung von CO2 aus der Umgebungsluft mit einer Direct-Air-Capture-Anlage der Firma Climeworks. Die Elektrolyse-Technologie, mit der durch Strom aus Wasser der benötigte Wasserstoff erzeugt wird, stammt von Siemens.

Im Projekt PowerFuel wird am KIT in einer von Ineratec entwickelten Pilotanlage CO2 mit Wasserstoff schließlich in Synthesegas umgewandelt. „Aus letzterem wird im Reaktor flüssiger Kraftstoff erzeugt“, sagt Ineratec-Geschäftsführer Tim Böltken. Durch dieses Power-to- Liquid-Verfahren lässt sich nahezu klimaneutraler Treibstoff wirtschaftlich herstellen. Die Energieversorgung aus erneuerbaren Quellen unterliegt naturbedingten Schwankungen. Durch den Einsatz der kompakten chemischen Reaktoren von Ineratec direkt vor Ort soll auf diese Schwankungen optimal reagiert werden und Strom, der bisher ungenutzt blieb in flüssigen Krafstoffen gespeichert werden. „Zudem haben unsere synthetischen Kraftstoffe im Vergleich zu konventionellem Benzin, Diesel oder Kerosin sogar bessere Verbrennungseigenschaften“, sagt Böltken. Die Qualität der synthetischen Treibstoffe sowie der Einsatz in verschiedenen Verkehrssektoren werden vom Deutschen Zentrum für Luft- und Raumfahrt (DLR) und der Firma Aviation Fuel Projects Consulting untersucht und beurteilt. In der Pilotphase soll die Anlage 200 bis 300 Liter Kraftstoff am Tag produzieren.

nachhaltige Luftfahrt

Kompakte Anlagen, mit denen sich überall klimaneutraler Treibstoff herstellen lässt, könnten die Verkehrswende beschleunigen. (Foto: KIT, PPQ)

Parallel zum Betrieb des Anlagenverbunds führen Siemens, Bauhaus Luftfahrt und die TU Hamburg Energiesystemanalysen des gesamten Anlagenverbunds durch, welche durch Simulationen basierend auf Strommarktmodellen unterstützt werden. Zusätzlich soll analysiert werden, wie der synthetisch erzeugte Kraftstoff in Verkehr gebracht werden kann.

Das Projekt wird vom Bundesministerium für Wirtschaft und Energie gefördert.

Details zum KIT-Zentrum Energie: http://www.energie.kit.edu

Quelle: KIT


 

ELEMENT EINS

Power to Liquid

Gasunie, TenneT und Thyssengas steigen in konkrete Planung für grüne Sektorkopplung mit Power-to-Gas ein

  • Strom- und Gasnetzbetreiber planen Bau einer 100 MW Power-to-Gas-Anlage in Niedersachsen
  • Anlage soll Sektoren Energie, Verkehr und Industrie koppeln
  • Power-to-Gas kann helfen das Stromnetz zu stabilisieren, die Abregelung von Windenergie zu begrenzen und künftigen Netzausbaubedarf zu begrenzen

 

Bayreuth, Dortmund, Hannover, 16. Oktober 2018.

„Nägel mit Köpfen“ wollen der Übertragungsnetzbetreiber TenneT und die Fernleitungsnetzbetreiber Gasunie Deutschland und Thyssengas bei der Kopplung von Strom- und Gasnetzen für die Energiewende machen. Die drei Netzbetreiber planen in Niedersachsen den Bau einer mit 100 Megawatt bis dato größten deutschen Power-to-Gas-Pilotanlage. In Betracht kommen Standorte im Bereich der TenneT-Umspannwerke Diele und Conneforde, in denen vor allem Offshore-Windstrom aus der Nordsee gesammelt und weiterverteilt wird.

Mit dem Pilotprojekt „ELEMENT EINS“ wollen die beteiligten Unternehmen erste Erfahrungen mit Power-to-Gas-Anlagen im industriellen Maßstab sammeln. Die Pilotanlage soll schrittweise ab 2022 ans Netz gehen und grünen Strom in Gas umwandeln, um so neue Speicherpotenziale für erneuerbaren Strom zu erschließen. Den Partnern geht es dabei um die umfassende Kopplung der Sektoren Energie, Verkehr und Industrie. So kann der in Gas umgewandelte Grünstrom nicht nur über bestehende Gasleitungen von der Nordsee ins Ruhrgebiet transportiert, sondern unter anderem auch über Wasserstoff-Tankstellen für Mobilität und über die Speicherung in Kavernen für die Industrie zur Verfügung stehen.

Der niedersächsische Umwelt- und Energieminister Olaf Lies sagte zu dem Projekt: „Das ist ein ganz wichtiges Signal für das Energieland Niedersachsen. Der Ausbau von Windenergie an Land und auf See schreitet voran. Allerdings dürfen wir die Energiewende nicht ausschließlich als Stromwende betrachten. Gerade der Sektorkopplung kommt eine herausragende Bedeutung zu. Ich begrüße es sehr, dass wichtige Player der Energiewende jetzt dabei aktiv werden. Das ist das richtige Signal. Einzelne Industrieunternehmen sind bereits am Thema Power-to-Gas dran. Wichtig ist es jetzt, dass wir industriepolitische Maßstäbe der Anlagen realisieren. Das ist hierbei der Fall. Gerade die Verbindung von Strom- und Gasnetz bietet große Entwicklungspotenziale. Aber auch die Nutzung des grünen Wasserstoffs für Mobilität, Wärme und Industrie bietet enorme Chancen. Wie dürfen nicht zu einseitig nur den Strombereich betrachten. Nur so erhalten wir eine Technikvielfalt und sind auch bei den engagierten Unternehmen breit aufgestellt.“

Die Partner haben das Projekt „ELEMENT EINS“ bereits dem Parlamentarischen Staatssekretär im Bundeswirtschaftsministerium, Thomas Bareiß (MdB), vorgestellt. Dieser zeigte sich hochinteressiert an dem Projekt: „Ich bin überzeugt, dass die Nutzung von erneuerbarer Energie als Wasserstoff eine wichtige Antwort auf noch offene Fragen der Energiewende sein wird“, so Bareiß. Er unterstütze daher die Initiative der drei Unternehmen ausdrücklich.

Für TenneT hat Power-to-Gas großes Potenzial, da so dem Stromnetz dringend benötigte Flexibilität zur Verfügung stehen kann. „Wir brauchen leistungsfähige Speichertechnologien, um das ambitionierte Ausbauziel für erneuerbare Energien 2030 zu realisieren. Wenn wir große Mengen an erneuerbarem Strom speichern können, entlasten wir das Stromnetz. Das hilft uns, die teure Abregelung von Windanlagen zu begrenzen und macht die Stromversorgung sicherer“, sagte Lex Hartman, Geschäftsführer von TenneT, und fügte hinzu: „Mehr Speicherung von grünem Strom bedeutet für die Zeit nach 2030 auch weniger zusätzlichen Netzausbau.“ Das innovative Projekt gehört zum umfangreichen Innovationsprogramm des Übertragungsnetzbetreibers, mit dem er Möglichkeiten untersucht, um mehr Flexibilität für den sicheren Netzbetrieb verfügbar zu machen.

„Wir müssen jetzt ‘Power-to-Gas geben‘, um unsere Klimaschutzziele in 2030 und 2050 tatsächlich auch erreichen zu können“, sagte Jens Schumann, Geschäftsführer der Gasunie Deutschland. „Gerade das Thema Sektorkopplung, mit dem eine intelligente Verbindung der Gas-, Strom-, Wärme- und Mobilitätsinfrastrukturen volkswirtschaftlich sinnvoll weiterentwickelt werden kann, bietet in diesem Zusammenhang ein großes, bislang noch nicht umgesetztes Potenzial. Der Power-to-Gas-Technologie kommt hier eine große Bedeutung zu, denn diese ermöglicht eine praktische Lösung für die Verbindung bislang getrennter Infrastrukturen.“

„Mit dem Bau einer Power-to-Gas-Großanlage ist auch klar, dass die Energiewende eine Ingenieursaufgabe werden muss, soll sie denn gelingen. Technische Innovationen und die sektorübergreifende Suche nach tragfähigen Engineering-Lösungen sind die entscheidenden Erfolgsfaktoren für die Energiewende. Wenn wir den Mut haben, unsere technischen Stärken hier zielgerichtet zusammenzuführen, dann werden wir am Ende auch erfolgreich sein. Für die profitable Entfaltung technischen Know-hows brauchen wir jetzt den nötigen Rahmen“, so Dr. Thomas Gößmann, Vorsitzender der Geschäftsführung der Thyssengas GmbH.

Power to Liquid

Hintergrund
Erneuerbare Energien speisen wetterabhängig ein und sind damit nicht immer verfügbar. Bis heute gibt es keine technisch und wirtschaftlich überzeugende Lösung zur Speicherung großer Mengen elektrischer Energie. Power-to-Gas kann hier einen Beitrag leisten, da entsprechende Anlagen regenerativen Strom in Gas (grüner Wasserstoff oder Methan) umwandeln, das über die Gasnetze transportiert oder gespeichert werden kann. Der in Gas umgewandelte regenerative Strom kann so in anderen Sektoren eingesetzt werden und damit dazu beitragen, die Energiewende zu beschleunigen.

Quelle: TenneT

Power to Liquid
Klimaschutz strategischer und internationaler entwickeln –Weltenergierat stellt Roadmap für grüne synthetische Kraftstoffe vor

Pressemitteilung 18.10.2018

  • Ehrgeizige Klimaziele sind ohne Power-to-X Kraftstoffe nicht denkbar – besonders im Verkehrssektor
  • Weltenergierat fordert mit Studie „Internationale Aspekte einer Power-to-X Roadmap“ den langfristigen Aufbau eines globalen PtX-Marktes ein
  • PtX ist industrie- und klimapolitisch eine große Chance für internationale Zusammenarbeit – die muss aber strategischer aus Deutschland heraus entwickelt werden

„Ambitionierte Klimaziele sind nur erreichbar, wenn erneuerbare Energien nicht allein direkt als Strom genutzt werden, sondern auch als Gas oder flüssiger Brennstoff speicherbar sind. Deshalb müssen wir uns viel systematischer mit der Entwicklung von synthetischen Kraftstoffen beschäftigen“, erklärt Carsten Rolle, Geschäftsführer des Weltenergierat-Deutschland, anlässlich der Vorstellung der Studie „Internationale Aspekte einer Power-to-X Roadmap“. „Sie werden die zweite Säule der Nutzung erneuerbarer Energien.“

Power to Liquid

Die Energiewende in Deutschland wird langfristig erhebliche Importe synthetischer Kraftstoffe aus dem Ausland erfordern, die aus erneuerbaren Energien erzeugt werden – sogenannten Power-to-X Produkten (PtX). Diese lassen sich in vielen Regionen der Welt aufgrund der besseren Standortbedingungen für erneuerbare Energien deutlich günstiger produzieren als hierzulande und anschließend exportieren. „Um internationale Zusammenarbeit anzustoßen, müssen wir aber mit diesen Ländern sprechen. Bislang sind unsere Erwartungen an die Rolle von PtX im Ausland zu wenig bekannt“, so Rolle weiter.
„Power-to-X wird nicht plötzlich da sein, seine Entwicklung braucht eine langfristige politische Strategie und eine schrittweise Skalierung.

Dazu sollen die vom Weltenergierat entwickelten Elemente einer Power-to X Roadmap beitragen“ erklärt Carsten Rolle.
Die Entwicklung eines globalen Marktes für Power-to-X aus Deutschland heraus ist eine industriepolitische Chance und klimapolitisch ein Schlüsselfaktor für ein CO2-freies Energiesystem. Der Bedarf an synthetischen Kraftstoffen kann langfristig sehr groß werden. Die hierfür benötigten Kapazitäten für Wasserstoffelektrolyseanlagen etwa können bis zu 3.000 bzw. 6.000 GW weltweit betragen. Bisher sind Elektrolyseanlagen mit einer Kapazität von lediglich rund 20 GW installiert.

Vielversprechende Partnerländer hat der Weltenergierat auf allen Kontinenten identifiziert. „Vorreiter wie Norwegen haben die technologische Umsetzung frühzeitig vollzogen und bereits erste Handelsbeziehungen aufgebaut“, nennt Rolle als Beispiel. „Mittelfristig stehen sogenannte ́Hidden Champions` wie Chile bereit, die über passende wirtschaftliche und regulatorische Rahmenbedingungen verfügen, um PtX-Projekte schnell zu entwickeln. Auch Länder wie Australien, Marokko und Saudi-Arabien verfügen über ausreichend Ressourcen, um zur Diversifizierung des Marktes beitragen.”

Voraussetzung für einen internationalen PtX-Markt ist die Weiterentwicklung der Technologie und eine schrittweise Skalierung, wodurch sich eine erhebliche Kostenreduktion realisieren ließe. Dies schließt auchgrößere Demonstrationsvorhaben und Erprobungen in Reallaboren und Modellregionen mit ein. Darüber hinaus ist die Schaffung von gleichen Wettbewerbsbedingungen für synthetische Kraftstoffe gegenüber konventionellen Brennstoffen aus Öl und Gas erforderlich.

Carsten Rolle weist auf den besonderen Wert der Zusammenarbeit hin: „Ohne eine stärkere internationale Kooperation wird eine Skalierung von PtX Technologien nicht gelingen. Umso wichtiger ist es daher, solche politischen Dialoge mit Partnerländern strategisch zu planen.“

PtX-Produkte sind eine CO2-freie Alternative zu den derzeitigen Energiequellen wie Öl und Gas und können in verschiedenen Sektoren wie Verkehr, Wärme, Industrie und der Stromerzeugung eingesetzt werden. Besonders beim Schwerlasttransport über lange Strecken, bei der Schifffahrt und bei der Luftfahrt gibt es bislang kaum CO2-freie Alternativen. PtX-Produkte spielen hier ihre Vorteile bei der Transportierbarkeit und der Energiedichte gegenüber Batterielösungen aus.

Die Studie, die Frontier Economics im Auftrag des Weltenergierat-Deutschland erstellt hat, ist online abrufbar unter: www.weltenergierat.de

Quelle: Weltenergierat – Deutschland e.V.

Weltklimarat IPCC legt Sonderbericht über 1,5 Grad Celsius globale Erwärmung vor

IPCC

IPCC-Sonderbericht

Der neue IPCC-Sonderbericht, der heute in Incheon/Korea veröffentlicht wurde, zeigt, dass bereits bei 1,5 Grad Celsius globaler Erwärmung weltweit hohe Risiken durch die Klimafolgen bestehen. Bundesumweltministerin Svenja Schulze und Bundesforschungsministerin Anja Karliczek sehen in dem wissenschaftlichen Bericht einen weiteren Beleg für die Dringlichkeit der Bekämpfung des Klimawandels. Dem Bericht zufolge liegt die aktuelle globale Erwärmung bereits bei etwa 1 Grad Celsius. Die derzeitigen Anstrengungen im Klimaschutz reichten nicht aus, um die internationalen Klimaziele zu erreichen. Im Pariser Klimaabkommen hatte die Staatengemeinschaft 2015 beschlossen, die globale Erwärmung auf deutlich unter 2 Grad Celsius, wenn möglich unter 1,5 Grad Celsius zu beschränken.
IPCC

Veröffentlichung des IPCC-Sonderberichts, Von links: Andreas Kübler (Pressesprecher BMU), Staatssekretär Jochen Flasbarth, Staatssekretär im BMBF Dr. Michael Meister und Prof. Dr. Daniela Jacob (Direktorin Climate Service Center Deutschland)

Keine Zeit mehr zu verlieren

Bundesumweltministerin Svenja Schulze: “Wir dürfen beim Klimaschutz keine Zeit mehr verlieren. Das ist die Kernbotschaft des Berichts. Die nächsten Jahre sind entscheidend, damit unser Planet nicht aus dem Gleichgewicht gerät. Dafür trägt gerade unsere Generation eine herausragende Verantwortung. Wir müssen den Abschied von Kohle, Öl und Gas hinbekommen. Jede vermiedene Tonne CO2, jedes vermiedene Zehntelgrad Erderwärmung zählt. Dieser Umbau bringt viele Veränderungen mit sich und die große Chance, unsere Wirtschaft zukunftsfähiger und unsere Gesellschaft lebenswerter zu machen.”

Bundesforschungsministerin Anja Karliczek: “Der Bericht zeigt: Der Klimawandel stellt uns als Gesellschaft in Deutschland, aber auch weltweit vor große Herausforderungen. Wir brauchen starke Beiträge aus der Forschung und müssen das Potenzial der Wissenschaft noch stärker ausschöpfen, um ihn in den Griff zu bekommen. Gute Ideen aus der Forschung und ein entschlossenes Handeln von Politik, Wirtschaft und Gesellschaft können die notwendigen Veränderungen voranbringen. Diese müssen den Klimawandel mindern, gleichzeitig sozialverträglich gelingen und Innovationsschübe für die Wirtschaft liefern.”

Neue Forschungsergebnisse zeigen, dass die Risiken für Natur und Mensch zwischen 1,5 Grad Celsius und 2 Grad Celsius globaler Erwärmung stärker ansteigen als bisher bekannt. Extremereignisse nehmen deutlich zu. Insbesondere wird es weltweit zu verstärkten Hitzewellen kommen, Starkregenereignisse werden vermehrt auftreten sowie in manchen Regionen extreme Dürren. Sensible Öko-systeme wie beispielsweise die tropischen Korallenriffe oder auch die der Arktis sind besonders bedroht.

Alle mit dem 1,5 Grad Celsius-Ziel kompatiblen Emissionspfade erfordern weltweit eine radikale Verringerung der Treibhausgas-Emissionen, um bis zur Mitte des Jahrhunderts CO2-Neutralität zu erreichen. Mit den derzeitigen Emissionsraten würden 1,5 Grad Celsius in den 2040-er Jahren bereits überschritten werden.

Quelle: BMU

Greener Skies Ahead 2018

Power-to-Liquid

PtL-Leitmesse in Deutschland

Bonn, Haus der Luftfahrt

Die 9. Internationale Konferenz “Greener Skies Ahead” zum Themenbereich Nachhaltige Luftfahrt findet am 13. November in Bonn statt. Auch in diesem Jahr steht die Konferenz ganz im Zeichen von Power-to-Liquid für die internationale Luftfahrt. Das Programm steht nun zum Download bereit.

Wie im letzten Jahr werden bekannte Experten zum Thema Power-to-Liquid referieren und insbesondere die enormen Potenziale und Chancen von PtL für die Luftfahrt erläutern.

Die Konferenz hat sich in den letzten drei Jahren zu einer Leitmesse für Nachhaltige Luftfahrt und PtL im deutschsprachigen Raum entwickelt. Von der Konferenz werden auch in diesem Jahr wichtige Impulse in Richtung Politik und Wirtschaft ausgehen und zu Umsetzungsprojekten von PtL-Produktionsanlagen anregen.

Die Anmeldung kann am einfachsten über die Event-Seite Greener Skies Ahead 2018  erfolgen. Alternativ steht ein Anmeldeformular im Programm zur Verfügung, oder Sie melden sich über die IASA-Event-Seite an.

Machen Sie mit und gestalten Sie mit uns die Zukunft einer Nachhaltigen Luftfahrt!

Power-to-Liquid

1 2 3 4